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Abstract
Pseudoforces appear in classical mechanics while discussing non-inertial reference frames. For instance, in a

rotating reference frame, the appearing pseudoforces are the centrifugal force, the Coriolis force and the Euler
force. In introductory mechanics courses, they are just treated as conventional forces, but in the context of
general relativity, they can also be interpreted as the extrinsic curvature of spacetime.

Introduction
Imagine riding a train while it is accelerating and dropping a rubber ball. From your perspective, the rubber ball
will not just bounce up and down on the same spot, but accelerate towards the back of the train - even if we let it
go without any horizontal velocity. Of course, we know why this the case - our reference system is accelerated, and
it actually is us accelerating away from the rubber ball, while it bounces on the same spot viewed from the outside.

Normally, the laws of physics are the same in all reference frames. Coordinates are not physical; they are just
something we invented to mathematically describe physical reality. And physics should stay the same no matter
what coordinates we draw exactly. This is an extremely powerful principle - for instance, Albert Einstein constructed
special relativity just by assuming that the speed of light is the same in all reference frames!

But we hit a limit when trying to use curved coordinate systems. Cartesian coordinate systems consist of lines that
should be (a) straight, (b) orthogonal to each other and (c) not accelerating. If we break one of these constraints,
classical mechanics and special relativity do not work anymore. Consider for instance Newton’s force law ¨⃗x = F⃗ /m,
i. e. ˙⃗x = const. when no forces are acting on the object. Such an object would move along a straight line, but if
one of the coordinate lines is curved, such a straight line would have ¨⃗x ̸= 0 (and similarly if the coordinate system
accelerates over time). Therefore, classical mechanics courses teach that in order to use Newton’s laws (or their
relativistic version), we need to choose a Cartesian, non-accelerating (and hence non-rotating) coordinate system.

What is gravity?
This is only partially true - differential geometry provides the mathematical framework to construct the relativistic
version of Newton’s laws in such a way that you can choose arbitrary coordinate systems, including curved or
accelerated ones. For instance, in a two-dimensional coordinate system with one time and space coordinate (t, x),
we could imagine an accelerated coordinate transformation

t′ = t (1)

x′ = x − 1
2at2 (2)

(3)

In such an accelerated coordinate system, a nonmoving object object x(t) = 0 would look like x′(t′) = − 1
2 at2 - it

would be accelerated downwards with acceleration a from the point of view of the accelerated observer, without any
interaction with external objects. In the classical, Newtonian picture, we could now define a pseudoforce F = ma
acting on any object with mass m such that Newton’s second law is still valid.

You may have noticed that this is starting to look a bit like gravity - the gravitational force exerted on an object is
also proportional to its mass FG = G Mm

r2 ∝ m. Let us picture (x, t) as the coordinate system of an interstellar
space station that is non-accelerating, and (x′, t′) as the coordinate system of a spaceship accelerating away from it
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with acceleration a. The passengers of this spaceship would naturally use the coordinate system (x′, t′) to describe
their surroundings in the spaceship - with the consequence that they feel a pseudoforce pressing them into their
seats. Because this pseudoforce is proportional to the mass of the objects and it is uniform, it would feel remarkably
similar to gravity to the passengers. In fact, if the window shutters were down, the passengers would not be able to
tell the pseudoforce apart from “real” gravity at all!

Figure 1: The pseudoforce accelerating objects towards the rear side of the spaceship is indistinguishable from
gravity for the passengers. Wikimedia/Mapos

This sort of “artificial gravity” is a common theme in hard science fiction. For instance, in “The Expanse”,
spaceships excessively accelerate on purpose to generate artificial gravity for their passengers. Another common
example is the so-called Stanford torus - a rotating donut-shaped spaceship. Its passengers move along with the
rotation, so in order to stay inside the torus, they have to be constantly accelerated towards its center. In the
reference frame of the passengers, this means that they constantly experience a pseudoforce dragging them towards
the outer wall of the torus. If the rotation speed and the radius of the torus both are sufficiently large, this
pseudoforce also will feel like “real” gravity.

After constructing his theory of special relativity, Einstein also did similar thought experiments and formulated
what is today known as the “equivalence principle”: It’s not just possible to tell apart acceleration from gravity -
these two things are the same physical phenomenon. Acceleration is gravity. When you are sitting in a closed box
and see objects being accelerated towards the bottom, there is no experiment you could do to determine whether
this acceleration/gravity is caused by a rocket engine or a planet beneath you.

There’s a catch to the equivalence principle though - if the box we’re in is sufficiently large, we could measure the
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acceleration at two points far from each other and see whether the acceleration vectors are exactly parallel to each
other. If the box is 10 meters wide, the acceleration vectors on both ends would still be perfectly parallel to each
other in the “rocket engine” case, but if the box was located on the moon, the angle between them would be about
0.002◦. We see that the equivalence principle only applies locally - if the region of spacetime we are observing is
infinitesimally small, gravity and external acceleration are the same.

Metric connections and pseudoforces
To measure distances in an arbitrary, non-Cartesian coordinate system, we need a so-called “metric tensor” gµν ,
which defines the scalar product between two vectors as ⟨v, w⟩ = gµνvµwν . Based on the metric tensor, we can
define the metric connection1 Γµ

νρ, which tells us how different segments of the coordinate space are linked to each
other. We can use this to formulate the so-called geodesic equation, which tells us how the tangent vector of a
curve has to change with the curve parameter such that the curve is a geodesic, i.e. “straight”:

d2xµ(τ)
dτ2 = −Γµ

νρ

dxν(τ)
dτ

dxρ

dτ
(4)

where τ is the proper time of the object moving along the curve. So let’s try this for the centrifugal force! We’re
first going to derive the metric of a rotating coordinate system, use it to calculate the relevant Christoffel symbols,
substitute it in the geodesic equation and see that once you take the non-relativistic limit, the geodesic equation
predicts an acceleration along the r axis.

Deriving the metric
Let’s consider a reference frame rotating around the z axis. We’ll start by writing down the curvilinear coordinates
for a spatial cylindrical coordinate system:

x = r cos θ (5)
y = r sin θ (6)
z = z (7)

The spacetime interval is given by the pullback of the Euclidean metric along this coordinate transformation:

ds2 = dx2 + dy2 + dz2 (8)
= (cos2 θ + sin2 θ)dr2 + r2(sin2 θ + cos2 θ)dθ2 + dz2 (9)
= dr2 + r2dθ2 + r2dz2 (10)

so we have

grr = 1 (11)
gθθ = r2 (12)
gzz = 1 (13)

So far so good, but we could’ve already guessed that. But it starts getting really interesting once we add in a time
coordinate t and set θ → θ + ωt, i.e. make the frame rotating in time:

1also known as Levi-Civita connection
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t = t (14)
x = r cos(φ) (15)
y = r sin(φ) (16)
y = z (17)

with φ = θ + ωt.

Now, the line element becomes

ds2 = dt2 − dx2 − dy2 − dz2 (18)
= (1 − r2ω2 cos2(φ) − r2ω2 sin2(φ))dt2 − dr2 − r2dθ2 + dz2 + cross terms in t, θ (19)
= (1 − ω2r2)dt2 − dr2 − r2dθ2 − dz2 + cross terms in t, θ (20)

We can directly read off this expression that for high ω, time will pass more slowly for an observer far away from
the center of rotation, analogously to the gravitational time dilation effect. This is because regions with higher r
rotate faster - indeed, we can also see that at r = 1/ω, gtt = 0 as such a point would have to rotate with

Geodesic equation
Let’s take the geodesic equation:

d2xµ

dτ2 = −Γµ
νρ

dxν

dτ

dxρ

dτ

At the non-relativistic limit, i.e. t ≈ τ , dxµ/dτ ≈ (1, 0, 0, 0) the geodesic equation for the r coordinate becomes:

a := d2r

dt2 = −Γr
tt

So we only need to derive a single connection coefficient:

Γr
tt = 1

2grλ (2∂tgtλ − ∂λgtt)

The only λ for which grλ ̸= 0 is λ = r, but ∂tgtr = 0. So we’re left with:

Γr
tt = −1

2grr∂rgtt = −ω2r

Reinserting this back into the geodesic equation, we get:

a = rω2

or F = ma = mrω2, which is precisely the classical result for the centrifugal force.

To summarize, the geodesic equation predicts that in the non-relativistic limit, a geodesic (i.e. straight line in
spacetime) will have an acceleration of rω2 along the r coordinate in a rotating coordinate system. We can see
that the right-hand side of the geodesic equation can be interpreted as the sum of all pseudoforces acting on an
object with 4-velocity dxµ/dτ .
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Conclusion
We have seen that the mathematics normally used to describe the curvature of spacetime in general relativity can
equally be applied to classical mechanics to derive pseudoforces. In principle, we could now go on to derive e.g. the
Coriolis force or the Euler force. This derivation is a nice exercise to see how EInstein’s equivalence principle plays
out in practice.
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