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Abstract

Renormalization is an important concept in quantum field theory, which is often described as subtracting
infinities from each other to assign finite values to initially divergent Feynman diagrams. While this is
certainly a formally correct way to describe the working principle of renormalization, it is of little use
in understanding why we need renormalization, or the physical significance of counterterms, renormalized
parameters or various cut-off methods.

In this article, I present an alternative interpretation of renormalization that puts a focus on conceptual
clarity. The reader should have basic knowledge of standard perturbative quantum field theory, i.e. second
quantization, the interaction picture and the perturbative expansion of the interaction Hamiltonian, Wick’s
theorem and Feynman rules in position and momentum space and a general idea on how to derive them.

1 The problem

(a) One-loop self-energy in scalar φ4

theory.
(b) s-channel second-order correc-
tion to the φ4 interaction vertex.

(c) Schwinger correction to the QED
interaction vertex.

(d) QED vacuum polarization.

Figure 1: Various divergent Feynman diagrams.

In most interacting field theories, we will invariably encounter Feynman diagrams that are divergent because
of an integral over a loop. Figure 1 shows some examples. The integral arises because the rule for momentum
conservation doesn’t fully fix all the internal momenta, so there are “leftover” integrals that don’t get
absorbed by the momentum conservation factors1

τ4δ(4)
(∑

i

pµi

)
.

A simple example is the first-order, one-loop self-energy of the phi particle in scalar φ4 theory (Figure
1In this article, we use τ = 2π for cleaner notation.
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1a):

1 + iMfi = 〈f |Ŝ|i〉

= 〈f |T [1 + (−i)Ĥint + (−i)2Ĥ2
int + · · · ] |i〉

= 1 + (−iλ) 〈0| â(p) φφφφ â†(p) |0〉+O(λ2)

= 1− iλ

∫
d4q

τ4

i

q2 −m2 + iε
+O(λ2)

We count four powers of momentum in the numerator (from d4q), and two powers of momentum in the
denominator (from q2), resulting in a q4/q2 = q2 divergence.

Let’s take a step back and reconsider what we just did: We asked for the amplitude of the process of
one phi going from momentum p to momentum p. In the interaction picture, the obvious possibility here
is “nothing happens”, represented by the 1 term in the expansion. The first-order process is the phi self-
interaction depicted in Figure 1a. However, if we find that this term is infinite, we get a result that looks
like 〈f | Ŝ |i〉 = 1− i∞, which certainly violates unitarity and hence doesn’t make much sense.

Apparently, our φ4 theory is inherently inconsistent. However, the other (non-infinite) terms of quantum
field theories can make quite useful physical predictions - consider for instance quantum electrodynamics,
which predicts hydrogen orbitals and transitions quite well if the divergent terms are just ignored. In the
early years of QFT, physicists thought that they could get around this problem by simply dismissing the
divergent terms as nonphysical. We’ll shortly see that this is not the case at all.

2 Phonons: An analogous problem

xj xj+1 xj+2 xj+3

Figure 2: A chain of coupled harmonic oscillators.

To understand the meaning of these infinities, we’ll consider a system of atoms on a crystal lattice. We know
that on such scales, atoms behave as quantum harmonic oscillators, and we know that quantum harmonic
oscillators are both well-defined and exactly solvable. To tackle the problem of renormalization, we’ll see if
we can construct a “real-life” version of scalar φ4 theory using a crystal lattice and take a look at whether
it exhibits the ill-defined divergent counterterms. Note that the following is not intended to be a rigorous
treatment of phonons, but simply an illustration of some important concepts, so we will omit some details
irrelevant to the illustration of the matter.

When considering a crystal lattice in the framework of quantum mechanics, we find that the classical
approximation of spherical atoms bouncing against each other doesn’t hold anymore - we need to consider
the individual atoms as quantum harmonic oscillators coupled to each other. A typical interaction potential
between two such harmonic oscillators on a crystal lattice is given by a potential composed of a 1/r12

repulsive term and an ionic 1/r attractive term:

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)]
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V (r)

V (r)
2nd order Taylor expansion

Figure 3: The lattice potential and its Taylor expansion at the equilibrium point.

We expand V (r) around its equilibrium point re to second order, as seen in Figure 3. This is a good
approximation for weak lattice vibrations and the base of the so-called Debye model of specific heat.

The Hamiltonian of a one-dimensional crystal lattice with N atoms, potential V (r) and atom mass m is:

Ĥ =

N∑
j=1

p̂2j
2m

+
∑
〈jl〉

V̂ (|rj − rl|)

=

N∑
j=1

p̂2j
2m

+
1

2
V̂ (|rj+1 − rj |)

where 〈jl〉 denotes the sum over nearest neighbors2. We now define xj as the position of the jth atom relative
to its equilibrium position, i.e. xj = rj − rej. Inserting the second-order Taylor expansion V (x) = Kx2 then
gives the Hamiltonian for N coupled harmonic oscillators:

Ĥ =

N∑
j=1

p̂2j
2m

+
1

2
K(xj+1 − xj)

2 (1)

To solve this system, we decouple the system by taking the discrete Fourier transform of xj :

x̃k =
∑
i

xie
τi kj

N

xj =
1

N

∑
k

x̃ke
−τi kj

N

While xj , j = 1, ..., N represent the displacement of the atom with equilibrium position jre, the new
coordinates x̃k, k = −(N−1)/2, ..., N/2 represent the displacement of the vibrational mode with wavenumber
τk/Na. Rewriting (1) in terms of the new coordinates gives3:

Ĥ =
∑
k

[
1

2m
ˆ̃pk ˆ̃p−k +

1

2
mω(k)2 ˆ̃pk ˆ̃p−k

]
,

or more simply in terms of creation and annihilation operators â(p), â†(p) of the new coordinates:

Ĥ =
∑
k

ω(k)

(
â†(k)â(k) +

1

2

)
, (2)

which is the Hamiltonian for N uncoupled oscillators, where ω(k) denotes the phonon dispersion relation

ω(k) =

√
4K

m

∣∣∣∣ sin(ka

2

)∣∣∣∣ .
2For simplicity, we assume periodic boundary conditions, i.e. the last atom of the chain being linked back to the first atom so

that the system becomes a “ring” of atoms.
3The details of the derivation are irrelevant for the purposes of this article; refer to [2] for details (and a clear and intuitive

introduction to QFT in general).
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2.1 The particle picture
To summarize, we’ve turned a system of N coupled harmonic oscillators representing individual atoms into a
system of N uncoupled oscillators representing the possible wavelength modes of the chain. In the “particle
picture”, we can say that an excitation of the wavelength mode k to the nth level corresponds to n phonon
particles of wavelength k being present in the system. Identifying wavelength modes with particles in this
way is the key element of second quantization. Again, [2] provides an excellent in-depth discussion of this
notion. In the case of many-body physics, the particle-like excitations arising from large systems of other
particles are known as quasiparticles.

Now, let’s have a look at the details of the phononic dispersion relation.

− /2a /2a

k

ω(k)

Figure 4: The phononic dispersion relation for N = 100.

In Figure 4, we can see that at low energies ω(k) <<
√

4K/m, the dispersion relation is approximately
equal to the linear (massless) dispersion relation ω(k) = cs|k|. At high energies however, it exhibits non-linear
behaviour.

There is a point crucial to our treatment of renormalization to emphasize that is often overlooked in
introductory solid state physics: The dispersion relation function is not “periodic” after ∆k = τ/a - it ends
there, because there are no possible phonon modes beyond −τ/2a < k < τ/2a. This concept is known as
the “first Brillouin zone” in solid state physics, but it is misleading in our formal treatment. Instead of a
periodic function with multiple, identical Brillouin zones, the reader should view ω(k) as a function with
a bounded domain. In the particle picture, this means that phonons with a wavenumber k > τ/2a or an
energy ω >

√
4K/m simply do not exist.

2.2 Interaction between phonons

p1

p2

p3

−(p1 + p2 + p3)
= −iλ

Figure 5: Interaction between phonons

To make the system a bit more interesting, we introduce a “toy model interaction” between phonons:

Hint =
λ

4!
x4 (3)

Note that the actual interaction terms resulting from a higher-order expansion of the lattice potential would
not look like this, but instead additionally carry terms containing the momenta of the interacting particles.
This, however, would unnecessarily complicate matters here, so we’ll leave those terms aside.
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Figure 6: Phonon dispersion relation, as measured by a quasi-physicist

2.3 A tale of quasi-physicists
Phonons are by far not the only quasiparticles found in crystals. Some common examples for other quasi-
particles are:

• magnons: collective spin excitations,
• polarons: interactions between electrons and ions,
• excitons: holes and electrons in a bound state
• etc.
All those quasiparticles can interact with each other in many different ways. Now, let’s imagine a crystal

in which the interaction between different quasiparticles is so strong that they readily form all sorts of bound
states, just like real elementary particles. The quasiparticles on our hypothetical crystal might bond together
to quasi-nucleons, quasi-atoms, quasi-molecules, and so on, until we have a full “quasi-chemistry” happening
on the crystal lattice.

When the right conditions are met, i.e. the crystal is large enough and there is a steadily available energy
source (for instance, a laser in our laboratory exciting a specific spot of the crystal), it is conceivable that
some form of “quasi-life” might evolve on our crystal. Of course, such lifeforms would be orders of magnitude
larger in size than life as we know it because the typical bound state between quasiparticles will necessarily
be larger than the distance between two atoms on the lattice, and hence much larger than the typical bound
state between elementary particles (e.g. a proton).

If at some point intelligent life evolves on our crystal, “quasi-physicists” will start to investigate the
nature of their universe. Gradually, they’ll discover their constituent quasi-molecules, quasi-atoms, and so
on, until they reach the level of single quasiparticles, which would of course be labelled “elementary particles”
by them. In their studies of these pseudo-elementary particles, the quasi-physicists would face challenges
similar to the ones real-world physicists face - some quasiparticles might only appear in bound states or at
very high energies, necessitating the construction of quasiparticle accelerators by our quasiparticle physicists.
Above all, the quasiparticles will be very tiny compared to the quasi-physicists, just like real elementary
particles are unimaginably tiny compared to human bodies.

2.3.1 Experiments by quasi-physicists
Now let’s say a quasi-physicist makes a first attempt to measure the dispersion relation of the phonon by
accelerating phonons to a known momentum and then measuring their energy. The result of this experiment
will look something like Figure (6). This is because the quasi-physicists and the quasi-measurement devices
will be very large in comparison to the lattice length a, and hence the typical momentum will be a lot smaller
than τ/2a, so that we land in the nearly-linear regime of Figure (4).

The quasi-physicists however know nothing of atom lattice lengths or maximum phonon momentums.
They can only observe the low-energy regime, and seeing that the linear fit perfectly describes the phonon
dispersion relation up to experimental error, they might come up with the following Lagrangian to describe
the phonon field they observe:

L =
1

2
(∂µφ)(∂

µφ)− λ

4!
φ4 (4)

which is essentially the Lagrangian for massless (m = 0) scalar bosons.
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Figure 7: One-loop correction to the phonon propagator

We find that this low-energy phonon theory diverges just as well as our previous scalar boson theory: 7:

iMfi = −iλ

∫
d4k

τ4

i

k2 −m2 + iε
(5)

Now, the quasi-physicists have an analogous renormalization problem. Similar to us, they are probably
scratching their heads over how it is possible that a theory that predicts the behaviour of phonon propagation
and interaction so nicely now suddenly yields infinite terms on a closer look. Should they just ignore the
divergent terms, or come up with some entirely new theory?

2.3.2 The answer to phonon renormalization
The answer to the problem of our quasi-physicists lies in the physical meaning of the integral in (5). The
process we are describing here actually is not just one, but many different ones - the virtual phonon prop-
agating from and back to the interaction vertex can have any arbitrary four-momentum k, so in order to
calculate the total amplitude of the one-loop correction, we need to integrate over all possible four-momenta
k the virtual phonon could have.

At this point, the real physicists in the lab with the crystal might observe the quasi-physicists discussing
this apparent inconsistency of their low-energy phonon theory. Contrary to them however, we know exactly
what is wrong with the theory (4) - it glosses over the high-energy behaviour of phonons! At very high mo-
menta, the phonons begin to exhibit a sinusoidal dispersion relation instead of a linear one, and more crucially,
simply don’t exist beyond some p ≥ Λ. We can smile at the futile efforts of the phonon physicists to make
sense of their theory and immediately see that the integral in (5) should not go up to infinite four-momenta,
but just to |p| < τ/2a. This obviously makes the integral non-divergent, and the renormalization problem of
the phonon is solved. If we were to establish contact with the quasi-physicists, we could tell them about this
high-momentum cutoff, which would allow them to write an “p2 < Λ2,Λ = (the value we gave them)” next
to all of their integrals. If their technology is roughly analogous to ours, this will be an unattainably high
energy value for them and hence hard to verify, but it makes the low-energy phonon theory self-consistent,
which in turn allows the quasi-physicists to calculate cross-sections and fit the data from their quasiparticle
accelerators to their theory.

2.3.3 Back to the real world
We have seen that while the phonon theory is perfectly divergence-free, its low-energy limit can appear to
contain divergent terms if we fail to consider the high-energy behaviour of the theory. Going back to normal
φ4 theory, we can start to see why the integral for the one-loop self-energy of the phi particle

iΠ(p) = −iλ

∫
d4q

τ4

i

q2 −m2 + iε
(6)

diverges. We have integrated over all possible momenta, from zero to infinity, implicitly assuming that
our theory is valid up to arbitrary energy scales. Doing this results in divergent terms, rendering our theory
useless. Therefore, in a classical reductio ad absurdum, we can conclude that in order for our φ4 theory to
have any chance to describe physical reality at all, we need to assume that the theory stops being valid at
some point and some other, higher-level theory takes over4. In a way, the theory predicts its own failure at
high energy regimes. For instance, it is a common view among physicists that spacetime might be “coarse-
grained” at very small scales - similar to how a lattice of atoms can be approximated as a continuous fields
at large scales/low momenta/low energies, but becomes coarse-grained at small scales/high momenta/high
energies.

Unfortunately, we don’t have any experimental evidence of such a “maximum momentum scale” or signs
of physicists from a higher plane of reality establishing contact with us so far, so we’re forced to guess.
A group of particle physicists at CERN might assume this cutoff to lie somewhere on the order of the
Planck scale and proceed to fit the cross-sections at LHC to the theory, obtaining values for the masses
and coupling constants. Then again, some theoretical physicists from Heidelberg might speculate that the

4There are several other ways to coerce a theory into behaving and yielding useful predictions, most notably dimensional
regularization, which assumes that the theory has a dimension slightly lower than 4 to make the integrals finite. The working
principle outlined here is essentially the same.
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cutoff is somewhere on the order of the Oh-My-God particle and obtain different values for the masses
and coupling constants. This would obviously cause friction in the physics community, so we need a way
to formulate a theory with a high-momentum cutoff while leaving the value of this cutoff open and still
obtaining predictions from the theory. This is the basic concept of renormalization.

3 The systematics of renormalization
Now that we have established the theoretical need for renormalization, let’s try to introduce a high-
momentum cutoff to our theory while maintaining deliberate ambiguity about its value.

3.1 Vertex renormalization
We start by considering the effects of the formerly divergent vertex function terms on the coupling strength
of the φ4 vertex. Up to second order, the bare vertex and the s-, t- and u-channel one-loop diagrams
contribute:

=

1

4

3

2

+

2

31

4

+

1 3

2 4

+
4

1

3

2
+O(λ3)

−iλP (s, t, u) = −iλ+ iΓs(s) + iΓt(t) + iΓu(u) +O(λ3)

where s, t, u are the Mandelstam variables, λP is the physical (as in: measured in a particle accelerator by
cross-sections) coupling, and

iΓs = (−iλ)2
∫

d4q

τ4

i

q2 −m2

i

(p1 + p2 − q)2 −m2

iΓt = (−iλ)2
∫

d4q

τ4

i

q2 −m2

i

(p1 − p3 − q)2 −m2

iΓu = (−iλ)2
∫

d4q

τ4

i

q2 −m2

i

(p1 − p4 − q)2 −m2

are the vertex function contributions. These terms are divergent, so we postulate a high-momentum cutoff
to make them finite:

iΓs,t,u

q2<Λ2︷︸︸︷
=⇒ iΓs,t,u(Λ)

For additional clarity, we write iΓs + iΓt + iΓu = (−iλ)2A(s, t, u).
In the end, we obtain a prediction for the full vertex function (and hence for the matrix element Mfi

and the cross-section ∝ |Mfi|2) that is dependent on the value of the bare coupling λ and the cutoff:

−iλP (s, t, u, λ,Λ) = −iλ+ (−iλ)2A(s, t, u,Λ) +O(λ3) (7)

This notations should raise an eyebrow, as the physical coupling is a real quantity we measure in exper-
iments - if we scatter two phis with some Mandelstam variables s, t, u, the result of the experiment will
certainly only depend on the actual physical parameters of the experiment! So (7) should actually look like

−iλP (s, t, u) = −iλ+ (−iλ)2A(s, t, u,Λ) +O(λ3) (8)

The exact values of s, t, u at which we perform the scattering experiment are called the renormalization
scale.

To actually make the theory fit the experiment, we need to adjust λ based on the cut-off Λ we guessed.
Imposing the condition that the theory with the parameter λ(Λ) matches our observations, we write:

−iλP (s, t, u)
!
= −iλ(Λ) + (−iλ(Λ))2A(s, t, u,Λ) +O(λ(Λ)3)

We exploit that we only work up to second order in λ:

(−iλP (s, t, u))
2 = (−iλ(Λ))2 +O(λ(Λ)3)

⇐⇒ (−iλP (s, t, u))
2 A(s, t, u,Λ) = (−iλ(Λ))2A(s, t, u,Λ)

⇐⇒ −iλ(Λ) = −iλP (s, t, u) + (−iλP (s, t, u))
2 A(s, t, u,Λ)

⇐⇒ λ(Λ) = λP (s, t, u) +−iλP (s, t, u)
2A(s, t, u,Λ)

7
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We see that we can guess any arbitrary cutoff Λ and adjust λ → λ(Λ) such that the predictions of the
theory remain the same regardless of our guess - up to the relevant second-order diagrams. If it turns out
that the final predictions of the theory are indeed independent of our guess for Λ to all orders in λ, the
theory is said to be renormalizable. In this case, the particle physics working group at CERN could guess
some Λ1, determine the corresponding λ(Λ1), and would arrive at the exact same physical predictions as the
group from Heidelberg who guessed Λ2, determined λ(Λ2) and used that coupling constant in their further
calculations.

Now, we can easily give an expression for the physical coupling at any arbitrary Mandelstam variables
−iλP (s

′, t′, u′):

−iλP (s
′, t′, u′) = −iλ(Λ) + (−iλ(Λ))2As,t,u(s

′, t′, u′,Λ) +O(λ(Λ)3)

Inserting λ(Λ) = λP (s, t, u) +−iλP (s, t, u)
2A(s, t, u,Λ):

−iλP (s
′, t′, u′) = −i[λP (s, t, u)− iλP (s, t, u)

2A(s, t, u,Λ)]

− i[λP (s, t, u)− iλP (s, t, u)
2A(s, t, u,Λ)]2As,t,u(s

′, t′, u′,Λ) +O(λ(Λ)3)

= −iλP (s, t, u)− iλP (s, t, u)
2 [A(s′, t′, u′,Λ)−A(s, t, u,Λ)

]
+O(λ(Λ)3)

In our case, the value of the integral A(s, t, u,Λ) is:

A(s, t, u,Λ) = C

[
log

Λ2

s
+ log

Λ2

t
+ log

Λ2

u

]
where C is some constant that doesn’t concern us. Our prediction for λP at s′, t′, u′ based on our initial
measurement of λP at s, t, u hence is:

−iλP (s
′, t′, u′) = −iλP (s, t, u)− iλP (s, t, u)

2C

[
log

s

s′
+ log

t

t′
+ log

u

u′

]
+O(λ(Λ)3)

which is even better, because we now have an expression for the prediction of our theory that is manifestly
independent of the guessed value of the high-energy cutoff.

3.2 Mass renormalization
Revisiting the phi one-loop self-energy (6), we again guess a high-energy cutoff, hence making the integral
finite:

iΠ(p, λ,Λ) = −iλ

∫
q2<Λ2

d4q

τ4

i

q2 −m2 + iε
(9)

where p is the momentum of the particle, q the internal momentum of the loop, λ the φ4 coupling constant
and Λ the high-energy cutoff. We note that the expression is independent of the external momentum p,
however we keep p as a parameter of Π in order to not lose generality.

As we have already determined that λ can be determined as a function of Λ based on scattering experi-
ments, we write iΠ(p, λ,Λ) = iΠ(p, λ(Λ),Λ) = iΠ(p,Λ).

The full propagator is now given by the geometric series

i

p2 −mP (p,Λ)2
=+

i

p2 −m2

+
i

p2 −m2
iΠ(p,Λ)

i

p2 −m2

+
i

p2 −m2
iΠ(p,Λ)

i

p2 −m2
iΠ(p,Λ)

i

p2 −m2

+
i

p2 −m2
iΠ(p,Λ)

i

p2 −m2
iΠ(p,Λ)

i

p2 −m2
iΠ(p,Λ)

i

p2 −m2

+ · · ·

where mP (p,Λ) is the position of the pole of the full propagator, i.e. the physical mass of the particle we
measure in particle accelerators. This can be solved via the geometric series formula:

i

p2 −mP (p,Λ)2
=

i

p2 −m2 +Π(p,Λ)

obtaining
mP (p,Λ)

2 = m2 −Π(p,Λ).

We see that once we postulate a high-energy cutoff Λ, our theory makes a prediction for the physical mass of
a particle. Just as the physical coupling constant in the last section however, this mass should only perhaps
depend on the momentum p of the phi:

mP (p)
2 = m2 −Π(p,Λ).
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Based on an experiment measuring the physical mass of the particle at some momentum (renormalization
scale) p, we can again determine the bare mass parameter m(Λ) as a function of our guess for the high-energy
cutoff:

m(Λ)2 = mP (p)
2 −Π(p,Λ).

Again, the point of m depending on Λ is admitting that we do not know anything about the high-
momentum cutoff - but if it lies at Λ, we can say for sure that the bare mass of the phi must be m(Λ). Our
renormalization scheme makes sure that the physical predictions stay the same.

3.3 Quasiparticle renormalization
The last important parameter of our theory to renormalize is the so-called quasiparticle weight Z. To
understand what it does and why we need it, first consider a free field theory like the free scalar boson theory.
The eigenstates of the Hamiltonian will be excitations of the individual wavelength modes, i.e. particles flying
around. The lowest eigenvalue is that of the vacuum |0〉, and we can produce more eigenstates by acting on
it with the creation operators of our theory. For instance, a state with one particle with momentum p would
be

|pfree〉 = a†(p) |0〉 (10)
which is an eigenstate of H0 with energy ωp. However, if we add in an interaction Hamiltonian, the resulting
Hamiltonian will surely have different eigenstates. For instance, some eigenstates might be particles bound
together by the new interaction, particles in hyperbolic trajectories to each other, and so on. One of them
will probably be our dressed particle state |p〉 we are looking for - in QED, for instance, it might be an
electron surrounded by a cloud of photons, positrons and other electrons. Expressing this as a formula, we
can say that our dressed particle eigenstate |p〉 of the full Hamiltonian is a sum of the original eigenstates
and some unrelated states |λ〉, like for instance a photon flying by the electron:

|p〉 = α |pfree〉+
∑
λ

βλ |λ〉

Turning this around, we can also write the original free state as a sum of the dressed particle state |p〉 we
are looking for, and some other interacting eigenstates |γ〉:

|pfree〉 = a†(p) |0〉 = A |p〉+
∑
γ

Bγ |γ〉

This equation tells us that if we act on the interacting vacuum with our original creation operator, it will not
just create the single-particle state we are looking for - it will also create some other, unrelated states with
amplitudes Bγ we are not interested in. The actual single-particle state is merely created with amplitude
A. Rewriting (10) with the more familiar Z = A2, we get

√
Z |p〉 = a†(p) |0〉+ · · · , (11)

ignoring the other states for now. An obvious interpretations of this relation is that a†(p) creates the dressed
particle state in question with probability Z, and any other state, like a bound or multiparticle state, with
probability 1− Z in total. Therefore, Z is also called the quasiparticle weight. The reason why we define it
as Z = A2 (and not, for instance, as Z = A) is that it makes the full propagator come out nicely:

〈φφ〉 = iZ

p2 −m2
(12)

In analogy with the vertex and mass renormalization, we can absorb this factor into a new “physical
field” operator:

φP (x) =
1√
Z
φ(x) (13)

(12) then becomes:
〈φPφP 〉 =

i

p2 −m2
(14)

This procedure is called field strength renormalization. Again, note that (14) is what we actually measure
in particle accelerators - it is physically impossible to create bare particle states, because we live in a world
full of interactions. Now, without doing explicit calculations, we can reasonably assume that there are some
loop terms involved in the quasiparticle propagator, so actually, we need to write

Z −→ Z(Λ)

and, based on the bare field operators φ(x), the theory would start to make a prediction for φP (x,Λ) and the
full propagator Dfull(y−x,Λ). However, we already know where this is supposed to go - we can measure the
full propagator and the physical field strength in experiments! So we pin Dfull/the physical field strength
φP to our experimental observations and make the bare field φ cutoff-dependent. Again, this is like saying
that we have no idea what Λ is - but if it is some Λ1, the bare field has to be

√
Z(Λ1) times the field we

measure:

φ(x,Λ1) =
√

Z(Λ1)φP (x) (15)
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3.4 Counterterms
So far, we have structured the renormalization procedure from the point of view of an experimentalist -
we measure some physical parameters φP ,mP , λP , and then try to explain it with a theory involving bare
parameters φ,m, λ. We notice that the predictions of the theory for the physical parameters are dependent of
the cutoff Λ we guess, so we make the bare parameters Λ-dependent for the theory to match the observations:

φ(x) −→ φ(x,Λ)

m −→ m(Λ)

λ −→ λ(Λ)

This scheme emphazises conceptual clarity, but can be cumbersome to work with in practice. There is
an equivalent scheme involving counterterms, which essentially does exactly the same, but just with slightly
different maths. We take inspiration from (15) and absorb the Λ-dependence in multiplicative factors to the
physical parameters:

φ(Λ) = Z
1/2
φ (Λ)φP

m(Λ) = Z1/2
m (Λ)mP

λ(Λ) = Zλ(Λ)λP

where Zφ = Z from the previous section. We can rewrite the bare φ4 Lagrangian in terms of these
renormalized parameters:

L =
1

2
(∂µφ(Λ))

2 − 1

2
m(Λ)2φ2(Λ)− λ(Λ)

4!
φ(Λ)4

=
1

2
Zφ(Λ)(∂µφP )

2 − 1

2
Z2

m(Λ)Zφ(Λ)m
2
Pφ

2
P − Zλ(Λ)Zφ(Λ)

2 λP

4!
φ4
P

Rearranging this yields:

L =
1

2
(∂µφP )

2 − 1

2
m2

Pφ
2
P − λP

4!
φ4
P (16)

− 1

2
(1− Zφ(Λ))(∂µφP )

2 +
1

2
(1− Zφ(Λ)Zm(Λ))m2

Pφ
2
P + (1− Zλ(Λ)Zφ(Λ)

2)
λP

4!
φ4
P (17)

We notice that the first part of the Lagrangian looks like a perfectly normal φ4 field theory - but this time
with the physical parameters straightaway! The inherent Λ-dependence of the theory can now be absorbed
into the interaction part of the Hamiltonian, i.e.

Hint =
λP

4!
φ4
P

+
1

2
(1− Zφ)(∂µφP )

2 − 1

2
(1− ZφZm)φ2

P − (1− ZλZ
2
φ)

λP

4!
φ4
P ,

so we can just treat it as a set of additional Feynman rules:

= −i(
1

2
(1− Zφ(Λ))p

2 +
1

2
(1− Zφ(Λ)Zm(Λ))m2

P )

= −i(1− ZλZ
2
φ)

λP

4!

These counterterms need to be inserted whenever an infinity arising frome naïvely integrating over infinite
momenta needs to be cancelled. They are often more convenient in practice, because we can just pick the
first part of the re-scaled Lagrangian (16) when doing “normal” computations, and concern ourselves with
the counterterms (17) when we want to calculate loop corrections.

4 Conclusion
Renormalization is often seen as some sort of black magic or wacky trick to cover up inconsistent theories.
In this article, we’ve seen that this is the case - our theory is in fact inconsistent, but rightfully so. Renor-
malization is just a very clever way of simultaneously admitting that we have no idea where our theories
start to fail, but still obtaining useful predictions from them.

In this article, we’ve only superficially covered the practical mathematical tools of renormalization. For
a more thorough introduction to the mathematical underpinnings of what we’ve discussed, the reader is
referred to e.g. [1].
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