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TL;DR: A lot of the nice techniques of geometric algebra for doing
physics are not exclusive to Clifford algebras, but can be formulated in
traditional maths as well. I think that we should focus on porting these
features to traditional maths instead of convincing everyone to learn an
entirely new mathematical language.
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1 Introduction
In theoretical physics, I have never encountered a more politically charged
subject than geometric algebra. The people who have heard of it seem to
cleanly split into two camps: The geometric algebra community who thinks
that it is the one mathematical language of physics to rule them all, and
have made it their mission to translate every single bit of physics ever done
into multivectors. On the other hand, outside the closer geometric algebra
community, GA has the reputation of making overblown promises and being
a cult (see for instance this tweet by mathematical physicist John Baez).

I first encountered geometric algebra about two years ago, and quickly
became interested in it. GA significantly advanced my personal understand-
ing of electromagnetism, spinors and multivariate calculus. However, over
time, I also came to doubt the claim of David Hestenes and his followers
that it is a “unified language for physics”, or even a clearly-cut distinct lan-
guage at all. Over the course of the last year, I developed several techniques
to translate common GA techniques into traditional theoretical physics lan-
guage, and wrote a GA lecture script about it as a uni project. In this
article, I will mention a lot of interesting stuff in passing, so if some points
of this article interest you, I recommend checking out the script to see the
concepts mentioned in here explained in depth.

In this post, I’ll go over various examples of GA techniques and discuss
their advantages and disadvantages. I’m a theoretical physicist and not a
mathematical physicist, so I won’t discuss mathematical formalities, but
instead focus on intuitive accessibility of the concepts.

1.1 What exactly is “geometric algebra”?

The common narrative both among GA supporters and opponents goes that
geometric algebra is just real Clifford algebras applied to various areas of
physics. However, I don’t think that’s true. Geometric algebra is more of
an umbrella term for a collection of mathematical and didactical techniques
related to:

• exterior algebra (EA),

• Clifford algebra (CA), and

• differential geometry.

I will use the term “geometric algebra” (GA) to refer to said collection,
and “Clifford algebra” (CA) to refer to the specific mathematical algebra.
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2 The useful parts: non-CA-specific stuff
A lot of the advantages of geometric algebra are not specific to Clifford
algebras, but can be expressed in conventional terms perfectly fine. The
main reason for that is that there is a huge intersection between Clifford
algebras and exterior algebras - an EA is basically just a CA with the scalar
product set to zero1. In the following couple of subsections, I will explain
why they look so different in practice, and what specific aspects make the
GA approach more palatable.

2.1 k-vectors and multivectors

The run-of-the-mill exterior algebra that is taught in every physics curricu-
lum is typically based on covectors - that is, we consider some vector space
V , take its covector space V ∗, and then form the exterior algebra

ΛV ∗ =

∞⊕
n=0

ΛnV ∗. (1)

The grade-n subspace Λn is basically just the space of fully antisymmet-
ric covariant rank n tensors over V - for instance, the electromagnetic field
tensor Fµν with downstairs indices is an element of Λ2V ∗.

I’m sure that there are historical and maths-aesthetic reasons for why
people normally do that - but in my opinion, this is horrible both for physics
didactics and physical intuition. Some people already have difficulties geo-
metrically visualizing covectors - personally, I’ve come to imagine them as
blocks of lasagna with the layers indicating “equipotential surfaces” - but
when it comes to geometrically picturing k-forms, most people (myself in-
cluded) have zero intuition for them. What on earth is a two-form? I know
the mathematical definition, but I have no idea how to mentally picture the
combined electric and magnetic fields as some sort of covariant 1+3D entity
using this formalism. I think this lack of geometric intuition is a major
reason for why people never use k-forms in everyday theoretical physics.

The main didactical innovation of geometric algebra is to define the
exterior algebra not over the space of covectors, but over the underlying
vector space itself:

ΛV =
∞⊕
n=0

ΛnV. (2)

1I once said this in front of a mathematical physicist and she seemed very angry about
it. But it is in fact true - if you set the scalar product/quadratic form of a CA to zero,
the geometric product ab = a · b+ a ∧ b reduces to the wedge product.
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The elements of the individual ΛkV are called k-vectors, and general ele-
ments of ΛV are called multivectors. Now, we suddenly have a very clear
mental picture for everything!

• Λ1V is the space of ordinary vectors, which are arrows pointing through
spacetime.

• Λ2V is the space of bivectors, which are oriented area elements that
you can picture as parallelograms spanned by two vectors, a ∧ b.

• Next, we have the trivectors Λ3V , which are oriented volume ele-
ments that you can picture as parallelepipeds spanned by three vec-
tors, a ∧ b ∧ b.

• etc.

We can even intuitively visualize fully antisymmetric contravariant ten-
sors now. Consider for instance the electromagnetic field with upstairs in-
dices Fµν - this is a bivector in Λ2V . We can visualize it as a parallelogram in
a Minkowski diagram. The parallelograms with one timelike and one space-
like axis are called hyperbolic bivectors, and represent electric fields. The
parallelograms with two spacelike axes are called circular bivectors, and
represent magnetic fields.

When we’re not doing GR, we mostly have a fixed metric ηµν , so V and
V ∗ are isomorphic and we can seamlessly translate between k-forms and
k-vectors2. In my opinion, this is a GA technique that should absolutely be
adopted into the physics mainstream.

2.2 Interior product between k-vectors

Another common critique of exterior algebra (and perhaps the main reason
for why it isn’t used more widely) is that it makes practical computations
very difficult in its conventional form. Consider for instance the electromag-
netic field equations in differential forms:

dF = 0 (3)
∗d(∗F ) = −j (4)

The first one - the exterior derivative - is rather easy to do by hand.
When it comes to the double Hodge dual, however, most people I know are
pretty lost. Some of them remember the abstract definition of the Hodge
dual, and some of them remember the tensor definition with the ε symbol
and the (−1)something, but no one really has any idea of what is going on,
geometrically.

2Remember that Λ(V ∗) ' (ΛV )∗ canonically.
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In GA, this construct is replaced with the so-called interior product
and the interior derivative, which gives you a neat geometric picture of
what this double Hodge dual is supposed to do. Roughly speaking, while
the exterior product with a vector “extends” k-vectors to k + 1-vectors by
adding an axis, the interior product takes away one axis of a k-vector to
make it a (k − 1)-vector. If you want to know the details, I suggest reading
the script I linked to.

Crucially, however, Clifford algebra is not needed to define the interior
product at all! In GA language, the above equations respecively read

∂ ∧ F = 0 (5)
∂ · F = j. (6)

In CA, we define the exterior and interior product as the highest and lowest
grade of the geometric product, respectively. However, just as we don’t
need CA to define the exterior product, we also don’t need CA to define
the interior product! The two expressions above have the direct tensor
equivalent:

3 ∂[µF νρ] = 0 (7)
∂µF

µν = jν . (8)

Basically, in tensor language, the interior product is an index contraction
(instead of the antisymmetrization of the tensor product). Again, the details
of this are very interesting, and I recommend reading the linked script above,
but the relevant point for this post is that the interior product from GA is
a very useful concept that does not need CA at all.

(As a corollary, this means that the reformulation of the cross prod-
uct with the exterior and interior product also doesn’t need CA.)

2.3 Differential geometry

In standard differential geometry and general relativity, it is common to use
metrics, tensors and Christoffel symbols. On the other hand, the GA com-
munity advocates the use of tetrads, k-vectors and spin connections.
Not that there is anything wrong with it - I think this is the better ap-
proach both conceptually and practically - but what really drives me up the
wall is how the GA community acts like they invented these things. It may
not be common, but mainstream GR absolutely has these concepts and uses
them without any reference to GA/CA - see for instance Appendix J of Car-
rol’s Spacetime and Geometry. Of course, they become more palatable with
GA techniques - imagining the Riemann tensor as a map from the parallel
transport bivector to the bivector generating a rotation is a lot more easy
than imagining an abstract map between two 2-forms. Similarly, the spin
connection is no longer an eldritch complex spin-1/2 representation thing,
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but a map taking a vector and returning a bivector (more on that later).
But there is nothing inherently Clifford about these techniques, and it is
certainly possible to adopt the GA style of teaching them without actually
having to use Clifford algebras.

Similarly, the techiques called “geometric calculus” and “directed
integration theory” are pretty much the same as standard exterior in-
tegrals - although again, they are made a lot more accessible by the use
of k-vectors and the interior product. For instance, the generalized Stokes
theorem in exterior calculus reads:∮

∂Ω
ω =

∫
Ω
dω. (9)

where Ω is a k-dimensional volume. In order to formulate a generalized
Gauss theorem, we’d have to do something weird with two Hodge duals
again. In geometric calculus notation3 however, we can just write∮

∂Ω
dY · ω =

∫
Ω
dX · (∂ ∧ ω) (10)

for the generalized Stokes theorem, and∮
∂Ω

dY ∧ ω =

∫
Ω
dX ∧ (∂ · ω) (11)

for the generalized Gauss theorem. In both cases, dX stands for the k-
vector-valued measure over the volume Ω, and dY for the k−1-vector-valued
measure over its surface ∂Ω.

However, this way of handling k-vector integrals is, in principle, com-
pletely independent of Clifford algebra. For instance, let’s say we want
a Gauss theorem for 1+3D spacetime, a 3D submanifold Ω and a bivector
field ω. The tensor notation translation of 11 for this case would be:

(2 + 2)!

2! 2!

∮
∂Ω

dY [µνωρσ] =
(3 + 1)!

3! 1!

∫
Ω
dX [µνρ|

(
∂λω

λ|σ]
)

(12)

where the [µνρ| · · · |σ] notation means that the antisymmetrization is only
performed over these indices (i.e. the contraction over λ is performed first).

Note how every single tensor in the above integral has a direct geometric
interpretation as a vector, bivector or trivector. In my opinion, we should
definitely adopt this technique into mainstream physics - but again, we don’t
need Clifford algebras to do so.

3It’s not strictly correct to call this way of writing the integral a different “notation”,
because this integral is scalar-valued as opposed to the differential-form-valued exterior
integral. The relevant difference is that we contract the integrand with the the measure
in geometric calculus instead of taking the pullback along the coordinate chart.
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2.4 Bivector algebra

The bivectors Λ2V can be represented as antisymmetric matrices acting on
V . To be precise: When we single out a metric, the bivectors Λ2V become
isomorphic to a subspace of the endomorphisms End(V ). In physics vernac-
ular, this means that we can pull down one index of the fully antisymmetric
rank (2, 0) tensor Bµν to obtain the rank (1, 1) tensor Bµ

ν .
These matrices Bµ

ν form the Lie algebra so(p, q) ⊂ End(V ), where (p, q)
is the signature of the metric. Hence, when we exponentiate these genera-
tors, we get the rotation matrices SO(p, q). The huge advantage of the GA
picture is that the generators directly correspond to the bivectors describ-
ing the respective plane of rotation. For instance, the rotation around the
z axis is generated by the matrix corresponding to the bivector lying in the
xy plane. In GA language, we also say that this is a rotation along the xy
bivector.

The huge advantage of this approach (as opposed to Euler vectors with
the cross product as the Lie bracket) is that it generalizes to arbitrary di-
mensions and signatures. For instance, in special relativity, the hyperbolic
bivectors generate boosts, and the circular bivectors generate spatial rota-
tions. In my opinion, this approach should definitely be adopted into the
mainstream - but again, the CA approach of rotors isn’t really needed here.
The tensor formulation of bivectors and the bivector algebra works perfectly
fine on its own.

3 The useful parts: CA-specific stuff
While Clifford algebra is not strictly required for a lot of useful GA stuff, it
is indispensable for some parts. For example:

3.1 Electromagnetic field equation and U(1) EM duality

The two electromagnetic field equations mentioned above already have a
succinct formulation in terms of the interior and exterior derivative:

∂ · F = j (13)
∂ ∧ F = 0 (14)

With the geometric product, they can be merged into a single equation:

∂F = j. (15)

This short and simple form of Maxwell’s equations is one of the main tri-
umphs of GA. On top of that, this form can be used to perform actual,
practical computations. The main reason for this is that 1+3D CA provides
a significantly better way of describing electromagnetic duality.
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As a short reminder: If a specific field F is a solution of the electro-
magnetic equations in vacuum, its Hodge dual ∗F is a solution too. This
seemingly discrete symmetry can be made a continuous U(1) symmetry by
linearly combining F and ∗F the following way:

F ′ = cos(θ)F + sin(θ)(∗F ) (16)

For every θ, F ′ is a solution too. The analogous construct in CA reads:

F ′ = F exp(Iθ), (17)

where I is the pseudoscalar for which I2 = −1. This allows us to make
arbitary duality rotations - in contrast, the Hodge dual only allows τ/4
turns4. The CA approach allows us to write a plane-wave solution as:

F (x) = F0 exp(Ik · x). (18)

We can check that this is a solution by:

∂F (x) = ∂F0 exp(Ik · x) = kF0I exp(Ik · x) = 0, (19)

where we have used kF0 = 0 in the last step. The huge advantage of this ap-
proach is that we have completely eliminated the need for complex numbers,
such that only physical degrees of freedom remain.

Again, if the details interest you, read the linked script - this extreme
ease of handling electrodynamics extends to the gauge-field formulation and
quantum electrodynamics. However, Clifford algebra is an indispensable
part of rewriting the Hodge dual with the pseudoscalar and the geometric
product, so there’s no easy way out here.

3.2 Rotors

In the section about the bivector algebra, I have glossed over a very impor-
tant question: The question of representations.

When we represent the bivectors as matrices/(1, 1) tensors over V and
use the matrix product to exponentiate them, we get the standard rotation
matrices we are all used to, aka the spin-1 representation of SO(p, q).
However, when we formulate bivectors as elements of a Clifford algebra and
use the geometric product to exponentiate them, we get the rotors, also
known as spin-1/2 representation of SO(p, q).

The rotation matrices M are used to rotate vectors (aka spin-1 objects),

v →Mv, (20)
4τ = 2π.
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and the rotors are used to rotate spinors (aka spin-1/2 objects),

|ψ〉 → R |ψ〉 . (21)

If we want to use a rotor to rotate a vector, we need to use a double-sided
transformation law,

v → RvR̃, (22)

analogously to how we need to use a double-sided transformation law to ro-
tate bilinear forms (aka spin-2 objects) with rotation matrices. This double-
sided rotor law is somewhat tedious to handle in practice, but didactically
speaking, the rotor approach to spinors completely wipes the floor with the
common approach of deriving spinors by complexifying the Lorentz alge-
bra, because suddenly, we have a clear geometric picture of what a spin-1/2
representation is supposed to be.

Also, rotors are a way better picture than quaternions, but I won’t get
into that here because Hestenes’ followers have already beaten this point
into everyone’s head (and I fully agree with them on that count).

3.3 Pauli and Dirac matrices

When describing spinors, physicists conventionally use the Pauli and Dirac
matrices - Pauli matrices for non-relativistic spinors, and Dirac matrices for
relativistic spinors. In the usual aproach to spinors, they basically just fall
out of the sky, and most people just accept them as something abstract with
no physical intuition.

However, Clifford algebra tells us that they can also be interpreted as
the basis vectors of the vector space we’re working on - the Pauli matrices
σ1, σ2, σ3 are a matrix representation of the three basis vectors of the 3D
geometric algebra, and the Dirac gamma matrices γµ are a matrix repre-
sentation of the four spacetime basis vectors. The matrix product between
them is equivalent to the geometric product between multivectors. In order
to introduce this isomorphism, we absolutely need Clifford algebra.

4 The shadow side
David Hestenes and his followers frequently make the claim that geometric
algebra is not just another mathematical tool, but an entire unified language
for physics. I strongly disagree with this claim - a lot of things just are
better left formulated in traditional maths, and the GA reformulation of
some concepts seems significantly worse than the original in some cases.
IMO, the most glaring examples of this are:
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4.1 Complex numbers

While reformulating quaterions as rotors, we replaced the three imaginary
units i, k, k with the three bivectors in three dimensions, and the EM duality.
Similarly, in the context of EM plane waves, we replaced the i in the phasor
exp(ik · x) with the pseudoscalar I = γ0123.

This way of replacing imaginary elements with multivectors is common in
geometric algebra - in fact, it is one of the stated aims of the GA community
to replace all complex numbers with real multivectors. There are some
cases were this works really well - see quaternions and EM duality - but in
other cases, it just makes things more difficult. Consider for instance the
standard replacement of complex numbers by 2D even multivectors. Apart
from slightly different terminology, this adds literally nothing. Complex
numbers and the even 2D Clifford algebra are isomorphic to each other. It’s
a nice toy example to explain the working principles of Clifford algebras in an
informal way, but I really don’t see what I could gain by writing z = a+e12b
and exp(e12θ) instead of z = a+ bi and exp(iθ).

4.2 Matrices and tensors

With exterior algebra, we can reformulate antisymmetric matrices as bivec-
tors - or more generally, fully antisymmetric rank-k tensors as k-vectors.
This does a lot of work in terms of geometric intuition, and I think that this
should be done wherever possible.

However, the GA community has made it its mission to replace literally
all matrices and tensors with some sort of Clifford algebra construct - mainly
in the name of “beautiful non-coordinate descriptions”5. This often results
in unyieldy constructs. For instance, the most prominent example of a non-
antisymmetric tensor in classical mechanics is the inertia tensor Iij . If we
want to calculate e.g. the rotational energy of an object, we’d write

E =
1

2
Iijω

iωj . (23)

In geometric algebra, this tensor is expressed as a linear map from bivectors
to bivectors, i.e. L = I(ω). This forces us to use significantly less idiomatic
constructs like

E = −1

2
〈ωI(ω)〉, (24)

where we had to insert the minus sign because bivectors square to -1. This
problem gets especially bad in GR, where it is vital to keep track of the
index types of the objects we are using.

5I’m surprised that there aren’t more people who know about abstract tensor index
notation. Basically, it’s a way of reinterpreting tensor index notation such that becomes
coordinate-free, with essentially zero changes.
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4.3 “Dirac-Hestenes” equation

As explained above, Clifford algebras are very useful to give the Pauli and
Dirac matrices geometric meaning. However, the standard geometric alge-
bra approach to spinors goes further - instead of just translating the involved
matrices to multivectors, people also commonly translate spinors to mul-
tivectors. Roughly speaking, the multivector Mψ representing some spinor
|ψ〉 represents the matrix one needs to apply to a given reference spinor
|psi0〉 (conventionally spin-up) to obtain |ψ〉, i.e.

Mψ |ψ0〉 = |ψ〉 . (25)

The multivector Mψ then transforms under a one-sided (i.e. spin-1/2) rotor
transformation law,

Mψ → RMψ. (26)

If we single out zero-3-momentum spin-up as the reference spinor, the Dirac
equation reads

∂Mψγ12 +mMψγ0 = 0 (27)

in terms of the multivector Mψ. This reformulation is commonly called the
“Dirac-Hestenes equation” in the GA community (+10 Cultishness points).

I think this reformulation is a horrible idea for several reasons:

• Spinors aren’t multivectors, in the sense that these two have com-
pletely different transformation properties. Multivectors are invariant
under 360◦ rotations, but spinors aren’t. Imagining spinors as multi-
vectors in the geometric sense actively hurts your physical intuition of
them, and it serves little to brute-force postulate the one-sided rotor
transformation law (26) for them.

• The fact that we had to single out a reference spinor |ψ0〉 breaks man-
ifest Lorentz invariance. In fact, this is glaringly obvious from the fact
that random multivectors like γ12 and γ0 appear in (27). That alone
would be a dealbreaker for me.

• If we want to perform operations on the multivector Mψ, we have
to use modified multiplication rules depending on the operation in
question. For instance, the operation γµ |ψ〉 corresponds to γµMψγ0.
This significantly complicates the handling of these multivectors in
the context of e.g. Feynman diagrams (on top of breaking manifest
Lorentz covariance all over again).

• Rotating the reference spinor by τ/2 and multiplying it by i has the
same effect:

γ21 |ψ〉 = i |ψ〉 . (28)
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The standard GA approach to spinors uses this fact to eliminate com-
plex numbers from the Dirac equation by replacing all imaginary units
with a right-hand γ12 - in fact, this is where the γ12 in (27) comes from.
However, this conceptually mixes up two different symmetries of Dirac
spinors - Spin(1,3) and U(1) symmetry respectively, which causes con-
fusion at best (in fact, it completely breaks down if we are dealing
with multiple Dirac fields with different electric charges).

This reformulation of spinors probably is the aspect of GA I dislike the
most.

5 Conclusion
As shown above, I think that a lot of the mathematical techniques that
make geometric algebra so great in the eyes of many physicists are not
exclusive to Clifford algebras at all. If we want to adopt them into the
physics mainstream, I think we’re better off not branding them as a part of
a “new mathematical language”, but instead preferentially introduce them
with conventional maths, as outlined above. Clifford algebras should be used
iff the specific technique in question absolutely requires it - and that is the
case a lot less frequently than most GA advocates claim. In any case, I think
it is better to drop the “geometric algebra” banner, because it has become
too strongly associated with the exaggerated claims of the GA community.

5.1 Bonus content: Is GA a cult?

I’ve called GA a cult somewhat provocatively in the title, but I think that
the question whether the GA community deserves to be called a cult is a
bit more nuanced. Strictly speaking, this question comes down to how you
define the word “cult”: Everyone agrees that GA is not a new religious
movement whose members dress up in black robes, gather in dark rooms
and chant “All hail the Dark Lord Hestenes”. On the other hand, I’d wa-
ger that everyone also agrees that the GA community has both a higher
degree of social cohesion and homogenity of ideas than other parts of the
maths/physics community. Whether or not you choose to call this a “cult”
is down to where you draw the border between “normal group” and “cult”.

In practice, however, the matter of calling GA a cult or not really just is
a social signaling issue - by using a definition of “cult” that includes the GA
community, you signal your disapproval of the concept of geometric algebra
and/or the GA community, and by using a definition that doesn’t include
it, you signal your approval (or indifference) to it. So this whole discussion
really is pointless.
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