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TL;DR: I show how to integrate out particles in the QFT path inte-
gral formalism analytically, and visually explain what happens in terms of
Feynman diagrams.
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1 Introduction
Ever so often, we hear the phrase “integrating out a particle” in QFT.
Roughly speaking, it refers to a procedure in which we remove a particle
from our theory, and simultaneously modify the action of our theory such
that the rest of the theory still looks the same. However, I’ve never seen
an actual, high-level systematic explanation on how to do this anywhere, so
I’m writing this blog post now.

1.1 Basics

We are going to use a simple toy model with a phion and chion real scalar
field:

S[φ̂, χ̂] = Sφ[φ̂] + Sχ[χ̂] + Sint[φ̂, χ̂], (1)
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where

Sφ[φ̂] =
1

2
(∂µφ̂)(∂

µφ̂)− 1

2
m2

φφ̂
2 (2)

Sχ[χ̂] =
1

2
(∂µχ̂)(∂

µχ̂)− 1

2
m2

χχ̂
2, (3)

and Sint[φ̂, χ̂] is some interaction vertex between them.
The hat notation I’m using here isn’t supposed to mean that the fields are

operators, but rather that they are fields that haven’t been integrated over
in the path integral yet - they are, so to speak, the path integral analogue
of operators.

In path integral QFT, we now define the path integral∫
Dφ̂Dχ̂ exp

(
iS[φ̂, χ̂]

)
(4)

If we want to extract predictions from it, we add source currents J,K
and define the generating functionals1

Z[J,K] =

∫
Dφ̂Dχ̂ exp

(
i(S[φ̂, χ̂] + Jφ̂+Kχ̂)

)
(5)

W [J,K] = i lnZ[J,K] (6)

such that when we take a functional derivative

δn+kW [J,K]

δnJ δkK
(7)

we obtain the sum of all Feynman diagrams with n external phion legs and
k external chion legs. Basically, in intuitive terms, we wiggle around the
source currents to check how they react to the fields.

Now, suppose that we are not interested in chions at all - for in-
stance because our accelerator only accelerates phions, and our detectors
only detect phions. This means that we’re not interested in Feynman dia-
grams with external chion legs - the only chions appearing in our diagrams
are internal propagators. Basically, we fix the chion source current K to
zero everywhere and vow to never touch it again:

Z ′[J ] = Z[J,K = 0] (8)
W ′[J ] = W [J,K = 0] (9)

As before, we can take derivatives of W ′[J ] and get all Feynman diagrams
with phion external legs.

If we want to calculate these Feynman diagrams, we now have two op-
tions:

1I am using the Einstein integration convention, i.e. Jφ =
∫
d4xJ(x)φ(x).
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• We proceed exactly as before - we take all the internal chion propaga-
tors into account and sum them up.

• We try to find a new action S′[φ̂] with new parameters, such that:

Z ′[J ] =:

∫
Dφ̂ exp

(
i(S′[φ̂] + Jφ̂)

)
. (10)

In other words - we’re trying to find a new theory S′[φ̂] that will yield
the exact same predictions for phion interactions as our previous
interacting theory - except that it doesn’t contain chions. The effects
that the internal chion propagators had on pure phion interactions should
be accounted for by shifting around the parameters of the old phions and
introducing new vertices. When we have done so, we say that we have
integrated out the chion.

Normally, we do this by performing only the chion part of the partial
integral. Let’s look at the simplest possible example first:

1.2 The easiest case

The easiest case is a theory in which the phions and chions don’t interact
at all, i.e. Sint[φ̂, χ̂] = 0:

S[φ̂, χ̂] = Sφ[φ̂] + Sχ[χ̂] (11)
Visually speaking: The phions do their thing, and the chions do their thing,
but they don’t influence each other - and when we integrate out the chions,
we expect that the interaction between the phions stay exactly the same.

In fact, the path integral nicely decomposes into a phion part and a chion
part:

Z[J,K] =

∫
Dφ̂Dχ̂ exp

(
i(Sφ[φ̂] + Sχ[χ̂] + Jφ̂+Kχ̂)

)
(12)

=

∫
Dφ̂Dχ̂ exp

(
i(Sφ[φ̂] + Jφ̂)

)
exp(i(Sχ[χ̂] +Kχ̂)) (13)

=

∫
Dφ̂ exp

(
i(Sφ[φ̂] + Jφ̂)

)∫
Dχ̂ exp(i(Sχ[χ̂] +Kχ̂)) (14)

=

(∫
Dφ̂ exp

(
i(Sφ[φ̂] + Jφ̂)

))(∫
Dχ̂ exp(i(Sχ[χ̂] +Kχ̂))

)
(15)
(16)

Now, when we fix K = 0, the second term is just some constant N , and we
have found our S′[φ̂]:

Z ′[J ] = Z[J,K = 0] = N
(∫

Dφ̂ exp
(
i(Sφ[φ̂] + Jφ̂)

))
(17)

=⇒ S′[φ̂] = Sφ[φ̂] (18)
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However, when the two particles interact, the new action S′ is bound to
be something different. In the following, I will explain the two cases where
is is possible to integrate out the chion in an interacting theory analytically.

2 Integrating out linear interactions
First of all, we consider the case where the interaction vertex Sint[φ̂, χ̂] is
linear in χ - or in other words, the interaction vertex has exactly one χ arm.
For instance:

Sint[φ̂, χ̂] = −gχ̂φ̂2

φ

φ

χ (19)

Now, let’s assume that we only have phion external legs. The only way that
internal chion lines can influence the Feynman diagram is by linking two of
the vertices together. In the integrated-out theory, we’d therefore expect a
contracted 4-phion vertex:

φ̂

φ̂

χ̂
φ̂

φ̂

φ̂

φ̂

φ̂

φ̂

How does this play out mathematically? First, we split up the action of
our theory like this:

S[φ̂, χ̂] = Sφ[φ̂] +
1

2
χ̂(−∂2 −m2

χ)χ̂− gχ̂φ̂2 (20)

For simplicity, we write the kinetic operator as A = (−∂2 −m2). We now
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complete the square:

S[φ̂, χ̂] = Sφ[φ̂] +
1

2
χ̂Aχ̂− gχ̂φ̂2 (21)

= Sφ[φ̂] +
1

2
χ̂Aχ̂ (22)

− 1

2
gχ̂AA−1φ̂2 (23)

− 1

2
gφ̂2A−1Aχ̂ (24)

+
1

2
g2φ̂2A−1AA−1φ̂2 (25)

− 1

2
g2φ̂2A−1AA−1φ̂2 (26)

= Sφ[φ̂] +
1

2

(
χ̂− gφ̂2A−1

)
A
(
χ̂− gA−1φ̂2

)
− 1

2
g2φ̂2A−1φ̂2 (27)

Now, we can insert this action into the path integral:∫
Dφ̂Dχ̂ exp

(
i

(
Sφ[φ̂] + Jφ̂+

(
χ̂− gφ̂2A−1

)
A
(
χ̂− gA−1φ̂2

)
− 1

2
g2φ2A−1φ2

))
(28)

=

∫
Dφ̂ exp

(
iSφ[φ̂] + Jφ̂

)(∫
Dχ̂ exp

(
i

((
χ̂− gφ̂2A−1

)
A
(
χ̂− gA−1φ̂2

)
− 1

2
g2φ2A−1φ2

)))
(29)

We shift the χ field integration variable in the inner integral to make it
independent of φ, i.e. χ → χ − gA−1φ2. Then, the inner integral suddenly
gets a lot simpler:

Z[J,K = 0] =

∫
Dφ̂ exp

(
iSφ[φ̂] + Jφ̂

)(∫
Dχ̂ exp

(
i

(
χ̂Aχ̂− 1

2
g2φ2A−1φ2

)))
(30)

The second part of the second exponent is entirely independent of χ, so we
can pull it out of the second integral:

Z[J,K = 0] =

∫
Dφ̂ exp

(
iSφ[φ̂]−

1

2
g2φ2A−1φ2 + Jφ̂

)(∫
Dχ̂ exp(i (χ̂Aχ̂))

)
(31)

In turn, the remaining part of the second integral is independent of φ, so
it’s just an irrelevant constant factor N in front of the path integral:

Z[J,K = 0] = N
∫

Dφ̂ exp

(
iSφ[φ̂]−

1

2
g2φ2A−1φ2 + Jφ̂

)
(32)
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Now, we can directly read off the new integrated-out action:

S′[φ̂] = Sφ[φ̂]−
1

2
g2φ2 1

−∂2 −m2
χ

φ2. (33)

That’s exactly what we expected! Or is it? We should ask ourselves two
very serious questions right now:

• Before we integrated out the chion, the chion-mediated interaction
was nonlocal: Figuratively speaking, two phions collide to produce a
chion, the chion moves somewhere else, and then decays into two new
phions. But a literal four-phion vertex should be local: Two phions
collide and form two new phions at the same spot. So how does that
fit together? The integrated-out theory is supposed to give the same
predictions for phions!

• How the heck are we supposed to interpret the propagator sticking out
in the middle of the four-phion vertex above?

You might’ve already guessed it - the two questions answer each other. To
see why, we need to descend from our notational ivory tower for a second
and make the involved coordinates explicit.

First of all, we are going to denote the chion propagator by:

G(y, x) =
1

−∂2 −m2
χ

(34)

The semantic content of this object is: “If we create a chion particle at time-
position x, we are going to find it at time-position y with the amplitude
G(y, x)”. The chion propagator describes how the chion particle propagates
- and in turn, it also describes the non-locality of the chion-mediated phion
interaction.

The four-phion vertex from (33) has the following written-out form:

−1

2
g2

∫
d4yd4x φ̂2(y) G(y, x) φ̂2(x) (35)

There’s no chion field in this vertex - but we can see how the vertex
“emulates” the effects of the chion without actually including it: Two phions
collide at time-position x, and two new pions are created at time-position
y - with the amplitude with which a chion would propagate from x to y.
Pretty cool, isn’t it?
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3 Integrating out quadratic interactions
The story gets a lot more interesting once we allow interactions that are
quadratic in χ, i.e. vertices with exactly two chion arms. For example:

Sint[φ̂, χ̂] = −gχ̂2φ̂

χ

χ

φ (36)

Again, let’s assume that we only care about Feynman diagrams with phion
external legs. As before, the only way chions can influence these diagrams is
by internal propagators. So let’s think about what shapes these propagators
can take.

Let’s say that there is an internal chion line somewhere in the Feynman
diagram. It has two ends - but when they connect to another propagator,
the line does not end. Instead, it leaves the vertex again, and goes on until
another vertex, and so on. Because we assumed that our diagram only has
external phion lines, it follows that the internal chion chain must eventually
bite its own tail and become a loop. Therefore, all internal chions in these
diagrams are chion loops.

χ

φ

φ φ

φ

φ

φ

φ

φ

Again, when we integrate out the chion, we’ll have to find a way to
describe the effects of all possible chion loops on the phions. We will need
to add one vertex with k phions for every chion loop with k phion arms.

At first glance, this looks like an impossible problem - but upon closer
inspection, it tells us a lot about (a) the meaning of functional determinants,
(b) the difference between bosonic and fermionic loops, and (c) the nature
of gauge ghosts.

We start by writing out the action of the original theory the following
way:

S[φ̂, χ̂] = Sφ[φ̂] +
1

2
χ̂(−∂2 −m2

χ)χ̂− gχ̂2φ̂ (37)

This time, we combine the χχφ vertex with the chion kinetic term:

S[φ̂, χ̂] = Sφ[φ̂] +
1

2
χ̂(−∂2 −m2

χ − gφ̂)χ̂ (38)
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The path integral now reads

Z[J,K = 0] =

∫
Dφ̂Dχ̂ exp

(
i(Sφ[φ̂] + Jφ̂+

1

2
χ̂(−∂2 −m2

χ − gφ̂)χ̂)

)
(39)

The first part is independent of χ, so we can pull it out of the chion path
integral:

Z[J,K = 0] =

∫
Dφ̂ exp

(
i(Sφ[φ̂] + Jφ̂)

)∫
Dχ̂ exp

(
i
1

2
χ̂(−∂2 −m2

χ − gφ̂)χ̂

)
(40)

This time however, the second part is not independent of φ, so we can’t
just split the path integral into two. We actually have to pay attention
to the result of the chion path integral now, instead of dismissing it as an
unimportant constant!

If you remember your path integral QFT classes, you’ll know that:∫
Dχ̂ exp(iχAχ) = N

√
1

detA
(41)

where N is some constant. It follows that:

Z[J,K = 0] = N
∫

Dφ exp
(
i(Sφ[φ̂] + Jφ̂)

)(
det

(
−∂2 −m2

χ − gφ̂
))−1/2

(42)

We can pull the determinant up into the exponential by taking its logarithm:

Z[J,K = 0] = N
∫

Dφ exp

(
i

(
Sφ[φ̂] + Jφ̂+

i

2
ln det

(
−∂2 −m2

χ − gφ̂
)))
(43)

So now, we can see that the integrated-out action is:

S′[φ̂] = Sφ[φ̂] +
i

2
ln det

(
−∂2 −m2

χ − gφ̂
)

(44)

Okay. Now that’s definitely NOT what we’re used to seeing in a clas-
sical action. Normally, the classical actions of our theories just consist of
polynomials of the fields. We know how to translate them to Feynman di-
agrams. But the logarithm of a determinant of a matrix? What does that
even mean? How do we build Feynman diagrams from that? To find out,
we’ll have to perturbatively expand that term.

Let’s treat the −gφ̂ bit as a pertubation around the free chion propaga-
tor:

A = −∂2 −m2
χ (45)

δA = −gφ̂ (46)

8



Now, we’d like to perturbatively expand ln det(A+ δA). For that, we
need to calculate the first functional derivative of ln detA - we vary A to
A+ δA and look at how δ ln detA depends on δA:

δ ln detA = δ tr lnA = tr δ lnA = tr

(
1

A
δA

)
(47)

If we translate this to Feynman diagram notation, we see that this vertex
of the new theory looks exactly like a chion loop term with one external
phion leg. Taking another derivative will act on the propagator 1/A inside
the trace:

δ
1

A
= − 1

A
δA

1

A
(48)

so for the second functional derivative of ln detA, we get:

δ2 ln det(A) = − tr ln

(
1

A
δA

1

A
δA

)
(49)

- the second loop term! And so on. By taking all possible functional deriva-
tives of the ln det term, we get all possible loop terms as vertices. The
last part is crucial - our new theory doesn’t actually contain chions, the
perturbatively expanded vertices just look exactly like the chion loops:

S[φ̂, χ̂] = Sφ[φ̂]−N + g
i

2
tr

(
1

−∂2 −m2
χ

φ̂

)
− g2

i

2
tr

(
1

−∂2 −m2
χ

φ̂
1

−∂2 −m2
χ

φ̂

)
+ · · ·

(50)

This way, it is guaranteed that the integrated-out theory for phions predicts
the same things as the full coupled phion-chion theory.

As previously mentioned, I think that this technique can teach us a lot
beyond the question of integrating out stuff:

(a) The ln detA = tr lnA term generates loop terms. This is very useful
to keep in mind while deriving the one-loop effective potential, aka the
Coleman-Weinberg potential.

(b) If we integrate out a bosonic kinetic term, we get a
√
1/ detA term.

If we integrate out a fermionic kinetic term, however, we get a detA
term. If we take the logarithm of these two, we can see that they have
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opposite signs. This sign difference is responsible for the fact that
fermionic loops have an extra minus sign in front of them2.

(c) In this post, we’ve turned the path integral over a field into a func-
tional determinant that generates k-phion vertices which look exactly
like chion loop terms. In the Fadeev-Popov procedure for gauge-fixing
non-abelian gauge theories, we do the exact opposite - there, the
determinant of the gauge fixing operator looks exactly like the result
of the integrating-out of a fermion, so we invent a new fermion called
the “gauge ghost”, which, when integrated out, yields the exact de-
terminant/loop vertices we had in the beginning. In other words, we
“integrate in” the gauge ghost. Of course, hell breaks loose when you
then add a source current for this “particle” and then wonder why you
have unphysical in and out states3. Who could’ve guessed. So, the
next time you think about gauge ghosts, remember that they are not
real - the only thing that’s real here are the multi-gluon vertices that
just happen to look like they’re fermionic loop terms of some fictious
gauge ghost.

4 Conclusion
• Integrating out particles with vertices linear in them results in new

contracted vertices containing a propagator of the integrated-out par-
ticle.

• Integrating out particles with vertices quadratic in them results in new
vertices that look like loop terms of the integrated-out particle.

2which, in turn, justifies the Grassmann number integration rules for fermions, I think.
3But somehow, everyone seems to do that anyway...? If you know why, hit me up.
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